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fifth order in a in /lo/ is also found to be in accord with (6.5). 
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LINEAR WAVES IN A FLUID FLOW WITH CONSTANT VORTICITY 
LOCATED UNDER AN ICE BLANKET* 

A.V. MARCHENKO and I.V. PROKHOROV 

The linear dynamics of periodic waves on the surface of a fluid layer of 
finite depth located under an ice blanket which is simulated by an 
elastic plate is considered. The fluid particles in the unperturbed 
state move at a constant horizontal velocity, the profile of which has a 
linear shift along the vertical. It is shown that several type of waves 
exist which propagate at the same frequency. The number of waves 
depends on the frequency, the flow parameters in the fluid and the 
physico-mechanical parameters of the ice blanket. The problem of the 
diffraction of waves of fixed frequency on the edge of a semi-infinite 
elastic,plate which floats on the surface of the fluid is considered. 
The problem is reduced to the solution of Laplace's equation in the 
strip with specified asymptotic forms at infinity and with boundary 
conditions on the sides of the strip which have a discontinuity at a 
point corresponding to the edge of the ice and contact-boundary 
conditions on the edge of the plate. The solution is constructed using 
the Wiener-Hopf method. The reflection and transmission coefficients of 
the waves across the edge of the plate are determined. The results 
obtained are analysed using the actual parameters of sea ice. 

In investigations of the dynamics of waves in a fluid layer with a constant vorticity 
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with a free surface, it has been shown fl, 21 that the equations of notion of the fluid have 
an integral which is an analogue of the Cauchy-Lagrange integral. The problem of the dif- 
fraction of surface and hydro-acoustic waves at the edge and at the inhomogeneities of an 
elastic plate floating on the surface of an infinitely deep fluid f3-6/ and the problem of 
the diffraction of internal waves in a layer of an exponentially stratified fluid on the 
edge of an ice field and on the edge of a semi-infinite film which changes the surface tension 
of the fluid /7-g/ are considered. 

1. Planar notions in a layer of a heavy fluid with an unperturbed depth X are con- 
sidered. The origin of the rectangular system of Cartesian coordinate I, y is located on 
the unperturbed surface of the fluid and the y-axis is directed vertically downwards. 

The vortex vector has a maonitude $2 == 8Ul& - av/ax(v. u are the vertical and horizontal 
components of the velocity of the fluid particles): It follows fron.the equation for the 
conservation of vorticity dQldt = 0 that if, at the initial instant of time, the velocity 
of the fluid particles has the form 

u = Qy -:- Ir :- u', u =: v', & = (V, - V)iH = const 

where V and V, are the velocities of the unperturbed fluid flow on its surface and at the 
bottom, then, the vorticity does not change at later instants of time. Hence, in the case 
of the velocities u' and V’, a potential v exists: 

.R~J = 0, (IL', v') =: r(+ (1 

The equations of motion of the fluid have the integral /l/ 

1) 

(1.2) 

(P and p are the pressure and density of the fluid and II: is the stream function). 
It is assumed that a thin elastic plate, which simulates an ice blanket, floats on the 

surface of the fluid. The pressure under the plate Pi is then associated with the atmospheric 
pressure P, = const by the relationship /2-4/ 

(1.3) 

Here, E and v are Young's modulus and Poisson's ratio of ice, h is the thickness of the 
ice and R is the magnitude of the flexure of the plate above the horizontal equilibrium 
position. 

If it is assumed that there are no fluid-free cavities formed under the ice blanket, the 
magnitude of the flexure is related to the velocity of the fluid particles on the surface by 
the kinematic boundary condition 

LT+’ Y=rl (1.4) 

L = am + (n7j t vacp/axja/ax 

Ano-flow condition is satisfied on the bottom 

a(piay = 0, g = H (1.5) 

By considering small-amplitude notions, we obtain a linear boundary-value problem for 
the Laplace Eq.(l.l) in the domain yF (O,H), ;cE (--=,oo) with boundary conditions (1.5) 
and the condition 

which follows from (1.2)-(1.4). 
Let us write the solution, which is of the type of periodic plane waves, in the form 

cp = A ch Ik(y - H))exp Ii (JCX + &)I (1.7) 

This potential identically satisfies Laplace's equation and the boundary condition (1.5). 
By substituting expression (1.7) into the boundary condition (1.6), we find that o is a 
root of the dispersion equation 
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G (k, co) = (o - a+) (o - a) = 0, wTt = -Vk - 

‘/,Q th kH (1 _+ 1/l - 4k (g + Dk’)W cth kH) 

(1.8) 

This dispersion relationship has two branches in the o, k plane, a positive and a 
negative branch, which are defined by the equations o = o+(k) which are invariant under 
the substitutions o-+---o, k-t-k. Both of these branches of the dispersion curve are 
therefore antisymmetric about the origin of coordinates. 

For small k, we find from (1.8) that 

c* = k-'@+ = -..-!I - ‘I&H (1 i: v’l - 4?+ h = g;(WQ*) (W 

Let us put 

v,=O, O,<V,(lOcm/s,lOm~H~lOYm (1.10) 

The estimates (1.10) are related to the real velocity scales of the flows and the depths 
in the ocean. 

It follows from (1.10) that h'$ 104. The velocities c* of the long waves therefore 
have different signs. The positive branch of the dispersion relationship is located in the 
first and fourth quadrants and the negative branch is located in the second and third quadrants 
of the 0, k plane when k is small. 

Let us consider the case when D = 0. Typical plots of the curves w = w(k) are 
shown in Fig.1. It follows from (1.8) that w-+ --oo when k-t i-or, and o++ i-00 when 
k+--co. On the dispersion curves o+ when k>O and o_ when k<O, there is a local 
maximum and minimum respectively to which the frequencies O* and ---a+ correspond. When 
w-0, Eq.(1.8) has a non-zero solution k = k,* (Fig.1) which corresponds to waves which 
are blocked by the flow and have zero phase velocity. When f cr) I( a*, there are four waves 
with a frequency w and different wave numbers k,', . . ..k.' (Fig.1). The waves k,'? 

propagate along the fluid flow while the waves k13+ propagate aqainst the flow. When 
I 0) / > Q* ( there are two waves with a frequency o and different wave humbers which propaqate 
along the flow (Fig.1). By putting V = 10 cm/s and H = 100 m, we obtain the estimates: 

z 20 s-l, 10” m -1 6 ) k,’ 1 & 1.5. IO” tn-1, 
I kle i 6% m-l, /k,” / 6 300 m-l, 300 m-J ,( / kIa j sg 10x mt-1, 

(1.11) 

It is seen that waves from the capillary range are necessarily present among the waves 
with a frequency 1 o I< a*. 

Fig.1 

Let us consider the case when D > 0. It is found from (1.8) that o+-_-t-p when k-++ 
w and a_---m when k-.&m. Plots of the dispersion curves o = o+ (k) and 0-z o_(k) 
for different values of 0 have a similar form in the domains kc0 and k>e respectively 
(they are represented by the curves wrt in Fig.2). 

When D<D,, where D, is the solution of the system of equations 
do+lak = ePo+lcYk~ = 0 

there is a local maximum and a local minimum on the branches o+ when k>O and o- when 
k<O to which the frequencies feq; foq; correspond (Fig-a). When D(D%, where D, is 
the solution of the equations 

ao+lak = O+ = 0 

the condition o:,l<o is satisfied. 

Typical plots of o+ when k<e and w_ when k >O, are represented in Fig.2 by the 
curves 0;. 
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In this case, Eq.(1.8), when o-o, has four non-zero roots km k"' 1-f' z.* (Fig.2) 

which correspond to waves which are blocked by the flow and have a zero phase velocity. Let 
us use the notation 

When IW I<~,,,i~t Eq.(1.8) has six roots which correspond to six waves with a frequency o, 

three of which propagate along the flow and three against the flow. When emin <I0 I< Omsx 1 
Eq.(1.8) has four roots which corresponds to four waves with a frequency o, one of which, 
when emin= o::~, propagates against the flow while three propagate with the flow and, when 

wmin " -uF,~ , one wave propagates along the flow and three waves propagate against the flow. 

When I ~I>~may, Eq.(1.8) has two roots which corresponds to two waves with a frequency o, 

which travel in opposite directions. 
When D2<D<D1, the condition o:,,>u:,~>O is satisfied. Typical plots of o+ when 

k70 and o_ when k<O are represented in Fig.2 by the curves e$- In this case, Eq. 
(1.8) does not have any solution differing from zero when a= 0. When Iot<w&, Eq.tl.8) 

has two roots corresponding to two waves with a frequency o which travel in opposite 
directions. When 4,,<Iol<4,2, Eq.11.8) has four roots corresponding to four waves 

with a frequency o. One of these propagates along the flow and three propagate against it. 

When IeI>$,, Eq.(1.8) has two roots corresponding to two waves with a frequency o, which 
travel in opposite directions. 

When D >DI, Eq. (1.8) has two roots iC,'.e which correspond to two waves with a fre- 

quency 0 which travel in opposite directions. Typical plots of o+ when k>O and 0. 
when k<O are represented in Fig.2 by the curves ei. 

Let us now consider a case which is of interest from the point of view of physical 
applications. We let a homogeneous ice plate float on the surface of a fluid and, following 
/IO/, we put 

E = 10s N/~IP, p = gOOkg/mY, h = 1 m (1.12) 

It follows from (1.12) that the dispersion curves correspond to the case when D > Dr. 

2. Let us consider the problem of the diffraction of periodic waves of fixed frequency 
o at the edge of an ice blanket floating on the surface of a fluid in the domain I > 0. 
All of the functions occurring in the problem depend on the time via a factor eiwt which 
is subsequently omitted. It is assumed that the parameters of the ice and the fluid satisfy 
the estimates (1.11) and (1.12). 

A source of periodic perturbations is located either at &OC along x or on the edge of 
the ice at the point z = y = 0. It is therefore necessary to specify the amplitudes of the 
waves which arrive on the edge of the ice from infinity as well as the force and moment actinq 
on the edge 

DPql~xz = M, DPq18xy = N, I-+ +O p.1, 

Here, M and N are the amplitude of the moment and the force. 
We note that the flow rate of the fluid across any closed volume located within the 

domain of the motion is equal to zero. However, the flow rate of the fluid close to the edge 
of the plate may be non-zero. The contact-boundary condition 

V(n--n+)=Q, $=lim n 
?C+*ll 

must therefore be satisfied on the edge. 
The quantity & must be determined from the solution of an internal problem on the flow 

round the edge of the plate. When V=D =0, conditions (2.1) and (2.21 are satisfied 
identically. 

When z++DL:, the solution of-the problem must have the asymptotic forms 

'p- 'pt- + VT-, x+ -c=; cp-) 'Pt+ + (P,+, x-+ -cm (2.3! 

'pi- =_ T,-e (k,‘) + r,-e (kl*), pt+ = T*‘@ (kz2) 

cpr - = R,-e (kxs) f R,-8 (k,‘), cpr+ = &+I3 (k,‘) 

e (k) = [ch k (y - H)/ch kHl& 
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The potentials vt- and rp,- correspond to waves travelling to the right and 'Pi+ and 

'Pt+ correspond to waves travelling to the left. 
Hence, in order to solve the problem under consideration, it is necessary to find 

functions cp and Ipwhich are harmonic in the domain y E (0, H), I E (-m, m) and which 
satisfy boundary conditions (1.5) and (1.61, where it is necessary to put D = 0 when z< 0 
and D>O when r>o. The solution of this problem, as will be seen from what follows, 
is not unique and depends on six arbitray constants A,, . . . . As which are determined from 
the contact-boundary conditions (2.1), (2.2) and from the specification of the asymptotic 
forms of the solutions at infinity (2.3). 

Let us represent the solution of the problem in the form of a Fourier integral 

P (k) 0 (k) dk 
-m 

q=& 1 +p(k)+(k)dk 

(2.4) 

It satisfies Laplaces equation and the boundary condition on the bottom (1.5)identically. 
Instead of (1.61, let us consider the following boundary conditions for the functions 

cp and $ when y =0: 

(2.5) 

The coefficients p, a,,...,~, are chosen such that the roots of the equation G, = 0 
are displaced into the lower half plane while the roots of the equation Gz = 0 are displaced 
into the upper half plane of the complex variable k. This enables us to carry out factor- 
ization in the Wiener-Hopf method and to take account of all types of non-decaying waves of 
freqeuncy w in the solution of the problem which is obtained by passing to the limit when 
y+O. 

Let us rewrite the boundary conditions (2.5), taking account of (2.4), in the form /6/ 

s pG,& dk = 0, s<O; 1 pG,e”‘= dk = 0, + > 0 

I4 & 

G, = G (D = 0) + ipG_., G, = G (D > 0) tm ipk 

G_ = k (al - a,k - th kH (cc2 + qk)) 

Imk<O, k=L,, lkl-tm; Imk>O, kEL,, lkl-tm 

(2.@ 

Assuming that the coefficient ~1 can take values which may be as small in modulus as 
desired, we find that the equations G,,, = 0 have roots which differ from Ii,', ., I;,‘, k,‘, k,? 
by small imaginary additions 

Ak,.’ z - W- (h ) 
cTGju3k [D = 0, k,‘) 

(2.7) 

Ak:.’ z - 
ipk:** 

acjak (.s > 0. k:%a) 

From the condition Im Ak,W > 0 we find that k>O. The coefficients aj can be chosen 
so that the inequality Im M,'<O fs satisfied. 

Conditions (2.6) will be satisfied if we put 

pG, = Q-, pG, = @+ (2.8) 

where ID+ and Q- are functions which are analytic in the upper and lower half planes of k 
respectively. 

Let us now represent G,,, in the form 

G, : g1 (V - ip (a3 -t a&n+ / (k2 + p’) (2.9) 
G, = g2D (k2 i_ $)“W 

II+ = fr (k-k, ), n- = (k - k,‘) (k-k,*) 
,=1 
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The functions grr2 are analytic, they do not 
close to the real axis of k and can be factorized 

The functions gj+ 
when Ik j-+00 in the 

Fig.2 

have zeros and tend to unity when Ikl+m 

6j = gj+gj-, ,:i=e~p[:&_T;~+&dk] 

and gj- are analytic, they do not have any zeros and tend to unity 
upper and lower half planes respectively. 
_. _. 

From (2.8) and (2.91, we rind 

cP+II+:1+ 
-(k-I- 

co-n-(/C- ip)""Cz- F 
%,- 

(2.10) 

The function F is analytic in the whole k plane. It follows from the convergence of 
the integral in (2.4) that p(k)- O(l k I-1-r), ~‘20, 1 k I-+ 00. Using formulae (2.8) and (2.9), 
we get 

F = 0 (I k I”/r-e), 1 k 1 - cs 

According to Liouville's theorem, we find from this that F is a fifth-degree polynomial 

F(k) = i Ajk’ 
ho 

(2.11) 

The constants Aj are determined from (2-l)-(2.3). By substituting series (2.11) into 
(2.10), we find do' and @-. We then determine p using formulae (2.8). On substituting p 
into (2.4), evaluating the integrals of the residues and putting pL=O in the solution, 
we find that 

(2.12) 

(p&=+9 (Pi1 = 0 
L&+ 

Xl+ = Il+g,+acrlak I(,k,~ 
(k,‘)‘/s &+ 

‘p2+ = 0 

(2.13) 
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In formulae (2.13) and subsequently it is necessary to put li,,j = b,, rpr* = 0 and replace 

2 by j. The quantities b,j (n = 1,2,jEZ) are the complex roots of the equations G, = 0 
lying in the upper and lower half planes of k when i>O and i< 0 respectively. When 
extracting a root from b,, it is necessary to assume that the k plane has been cut along 
the positive part of the imaginary axis when calculating XJ- and along the negative part OE 

the imaginary axis when calculatinq xl+. For large ]i ], the roots bl’ have the asymptotic 
forms 

From the linearlization condition (1.4), we find 

(2.14) 

From (2.1)-(2.3), we obtain a system of six linear algebraic equations for determining 
the unknown coefficients A, of the polynomial F: 

-$ (k,‘)3 F @*I) ‘pi’ + ,il (b,j)” F (b;) @,+ = i/VP 
1=1 

The reflection coefficients & and R,' are determined from relationships (2.3) using 
(2.12) 

R;,z = F (k?1)XQ14r R a+ = F (kh’)xx+ 

The velocity potential (p, defined by formulae (2.12), is continuous in the whole of the 
domain of motion, including the point x = y = 0 and has derivatives of any order everywhere 
apart from the point s=y=o. The derivatives &/dx, a"i\/ati when s> 0 and acpiayanlax 
when ~(0 have singularities at the point x = y =0 and increase on approaching the edge 
in inverse proportion to the distance from it. The increase in the velocities Stpi& and 
acpl%J is explained by the fact that the flow rate of the fluid across a circle of small 
radius with its centre at the origin of coordinates is equal to zero. The derivatives apiax 
when x< 0 and &pfay, a”qf8xn (n < 3) when s> 0 are finite as the edge is approached but 
the elevation of the surface of the fluid 1 has a discontinuity of the first kind at the 
point 5 = y = 0. 

The functions cp,* determine the asymptotic forms of 'p when X-t&CO and correspond 
to non-decaying periodic waves which bring energy to and carry away energy from the edge of 
the ice to infinity. 
(Pf* 

When H-+ CQ, y+H, the functions ipplt decay exponentially. The terms 
make a contribution to the solution close to the edge and decay exponentially far from 

this edge. When A+co,y-+H, the exponential decay of VI* has an oscillatory form. 

3. Let us now draw some conclusions. The occurrence in a fluid with a non-zero velocity 
V on the surface leads to a state of affairs where, at the point x=y=o, it is necessary 
to set out a contact-boundary condition (2.2) which specifies the flow rate of the fluid Q at 
a given point. Condition 12.2) corresponds to the splashing of the wave across the edge of 
the ice or to a periodic fluid source or sink arranged around the edge. If V=O, then 
Q=O and condition (2.2) is satisfied identically. 

It follows from (1.111 and (1.121 that there is a critical frequency w+ such that, when 
o> at, the wave numbers of the reflected waves kls+ become complex. Hence, when 
w> m*, a reflected perturbation decays asymptotically as it becomes more remote from the 
edge of the ice in the domain x(0. 
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The diffraction of the surface wave k,* (Fiq.1) with a frequency o< o* on the 
edge is the cause of the generation of the wave klP from the capillary range which propagates 
towards the pure water. If V=O, that is, there is no flow on the surface of the fluid 
and no capillary waves are excited. 

A short wave k,’ arriving at the edqe as a result of diffraction excites long waves 
under the ice and on the pure water. 
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